NEGATION AND IMPOSSIBILITY

Kosta Do3en

In this paper we shall present a method for modelling negation
inspired by modal logic. The gist of the method is to treat negation
as an impossibilty operator added to negationless logic. To model
this impossibility operator we use Kripke-style models which have an
RN relation on the set of "worlds"™ such that for every world x

kA ¢ Vyxry= yja).

We shall concentrate here on propositional logics obtained by
extending Heyting's positive logic with some negation axioms. It is
easy to pass from models for these logics to models for logics ob-
tained by extending the positive fragment of classical propositional
logic, or of some intermediate propositional logics, as we indicate
briefly at the end of this paper. As a matter of fact, the method
we shall present is even more general: it can be used with relevant
model structures in order to model various extensions of positive
fragments of relevant propositional logics, as it is shown in .

We shall first consider the weakest extension of Heyting's posi-
tive logic captured by our models. This logic will be called N. In
models of N the RN relation is as general as possible, and hence N is
in the same position as the minimal normal modal logic K. Next we
shall consider what conditions concerning R" correspond to various
negation axioms. Completeness with respect to models satisfying
these conditions can be proved along rather familiar lines, and we
shall only indicate briefly how to obtain these completeness proofs.

Models for systems with negation still weaker than negation in N
could be obtained by adapting the neighbourhood semanties for modal
logic. (These models are treated in [9].)

This paper summarizes results which are given in more detail in
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[6] and [5]. It is an offspring of the treatment of intuitioninmtic
modal logic presented in [2] and [4].

The system N. The system N and its extensions are formulated in a

standard propositional language which we shall call L. In L we have
denumerably many propositional variables, for which we use the sche-
matic letters p,q,...; the connectives of L are =+, A,V and 1. We
use A,B,C,... as schematic letters for formulae. The symbols V.3,
>,& ,&, or, iff, not, and set-theoretical symbols, will be used
in the metalanguage with the usual meaning they have in classical

logic.
The system N is obtained by extending a standard axiomatization

of Heyting’s positive logic in L (see [6]) with the rule
A—»B
TB s MA
and the axiom schema
(1A ATIB)—= 1(AV B).
Models with respect to which N can be shown sound and complete
are defined as follows,
Definition 1. Pr -<X,RI,RN> is an N frame iff
(i) X is a nonempty set,
2
(ii) R.€X° and R
=, I ey
(iii) HNQX and RIHN.C.RNRI .

Definition 2. M = {X,R[,R.,V) is an N model iff

is reflexive and transitive,

(i) <X,RI,RN> is an K frame,
f1i) V is a mapping from the set of propositional variables of
L tc the power set of X such that for every v and for

every x and y in X we have xR,y ® (x€V{p)=> y€ V(p)}.

ST =<x,RI,aN,v) and x€X, the relation A holds in x, i.e.

xk 4, 1s defined by the following ecuivalences:

1Y xkp €& x€V(p}



(i1) xEBAC <4 (xpB & xEcC)

(iii) xfBVC <> {(xfB or xpC)

(iv) xfB+c <> VYy(xRy=» (kB yhe))

(v) xfk1B & Vy(xRNy¢y¥B), where y¥B means not vy pB.

A formula A holds in a model M, i.e. n#A, iff A holds in every
x in the X of M; A holds in a frame Pr, i.e. FrkA, iff A holds in
every M with the frame Fr.

The only point which needs explanation in -these definitions is
the condition RIRNQRNR;]' which N frames must satisfy. This condi-
tion is sufficient to prove the following statement:

Intuitionistic Heredity. In every N model, for every x and y, and
for every A of L, we have xR.y = (xpA»yEA).

In fact, BIRNSRNR;1 is both necessary and sufficient for Intuition-
istic Heredity (see [6]). There is a certain regularity in this con-
dition. Suppose that we extend L with the modal operators O ,O,ﬂ
and &, and that in cox'responding models of the type <X’RI’RM'V> we
require that:

xf oA & Vy(xRMy-byFA)

xEOA & Jy(xRyy & y4)

xfFAr & Jy(xRyy & yKA)

FOA S ~Vy(xR.My¢yj£A).

Then necessary and sufficient conditions for Intuitionistic Heredity

in these models will be respectively:
RyRy © ByfRy
Ry Ry SRRy
RY S PRy
iRy SRYRY -
The minimal systems captured by these models are obtained by exitend-

ing the Heyting propositional calculus with respectively:

A-=B

T, (OoaAOB)—0O(AAB), O(A—wA)
OA- OB
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_A*B . O(AVB) > (OAVOB), T10T(A-4)
OA—= OB

_AB  , H(AAB) > (HAVEB), @ (A= t)
B A
A, (BAAGB)Z(AVE) , Z1(a—n).
BB BA
(Proofs of these results are in [2] and [5] .) As & corresponds
to 1, so }Z corresponds to an operator dual to intuitionistic nega-
tion,which is called Brouwerian negation. (Brouwerian negation is
investigated in [7] and [8].)
An N frame (model) will be called condensed if RIRN ﬂ-RN, and it
will be called strictly condensed if R Ry w R 'w R.. The condi-

tions of condensed and strictly condensed N frames are sufficient for

Intuitionistic Heredity, but they are not necessary. A further "“con-
deasation" of N models would be made by requiring that RI is not only
reflexive and transitive, but a partial-ordering relation. The com-
pleteness results which follow would also hold for such an RI‘ (Sim-
ilar "condensations™ can be achieved for models connected with 00,0
and @, as it is shown in [2] and [5] .)

Next, it is possible to prove the following theorem:

Theorem 1. The formula A is provable in N iff A holds in every (con-

densed, strictly condensed) N frame.

This completeness theorem is proved by using a rather standard
technique of canonical models (see [6]). The canonical N frame will
be made of theories, i.e. sets of formulae which are deductively
closed and have the disjunction property, but are not necessarily
consistent, If [ and A are theories, the RI relation on the canon-
ical X frame is defined as usual by I"RIA% rea, and the RN rela-

tion by:
TRo 4 YA(Taeraga).

Let us explain where this definition of RN comes from. For the

canonical model we must show that

FeA &> A€l



In order to prove this equivalence for canonical models of systems
with 0,0, and & we must have (see [2] and [5]):

DAEr = (PRMA-»AGA)
TRy & AcA =» OAET
TR,A & AfA =» flaerm
grer = (TR A =>agh).

From these implications we can extrapolate respectively the equiva-~
lences:

FR,A ¢ Ya(Drel =varea)

TRyA & VA(reA =» Orem)

FR,A & Ya(a¢A = paerl)

TR, b © Va(Frel =>agA).

The last equivalence then corresvonds to the definition of B.N. The

canonical N model is a strictly condensed N model.

Extensions of N. In this section we shall consider a number of nega-
tion axioms which correspond to first-order conditions on N frames.
Using N frames which satisfy these conditions we can prove complete-~
ness theorems for a number of familiar extensions of N.
: -1
Let R.‘ be an abbreviation for R“.RI and let Fr be an N framey

then we can show the following equivalences (see [6]):

(1) Prfa—» 104 4> R, is symmetric
(2) PrE(A-»B) » {1B»"14) > V¥x Vy(xRNyasz(xRIz % YRz &
anz\)
(3) FrAav A ¢S Frp(la-s )i
© r R}
(4) Prf1avaA @R:lle;R._l
(5) PrE1(a—>4a)>B < Yx3y xRy
(6) PrE(AATIA)—>B &~ R_‘ is reflexive
(7) Prf 17A «»4 « Vx3Iy(xRy &Vz(yRyz & 2R ).

The Johansson propositional calculus J can be obtained by ex-
tending N with the axiom schemata of (1) and (2). The Hevtings tro-

positional calculus H can be obtained by extending J with the axion
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schema of (6). Curry’s system D (sée [3], Chapter 6) can be obtained
by extending J with either of the axiom schemata of (3). All these
systems are complete with respect to (condensed, strictly condensed)
N frames which satisfy the corresponding conditions in the equiva-
lences above.

It is well known that J is complete with respect to Q models of
the form <x,RI,Q,V> where X,R; and V are as before, and Q€X is such
that for every x and y in X we have xR,y b (x€Q=» y€Q); x kA is
défined as before save that we have x F1B Vy(znl.y# (yEB=» y€Q)),
As we have remarked above, J is also complete with respect to N mod-
els which satisfy the conditions of (1) and (2). Let us call these
K models, J models. Now, Q models are intertranslatable with strict-
1y condensed J models, as the following theorems of [6] show:

Theorem 2.1. Iet M, ={X,R;,Q,V) be a Q model, and let Ry be defined
over X by
(i) xRy L= az(xRIz & yR.z & z £Q).

Then M'N=<X’RI’RN'V> is a strictly condensed J model such that

(11) z€Q € 3xIy(xR;z & yR = & not xRyz)

(iii) x A in ¥, & x FA in M.
Theorem 2.2. Let MN =<X,RI,RN,V> be a strictly condensed J model,
and let QEX be defined by (ii) of Theorem 2.1. Then M, -(x,RI,Q,v)
is & Q model such that (i) and (iii) of Theorem 2.1 hold.

As RN becomes definable in terms of Q and RI in strictly con-
densed J models, so it is definable in terms of RI alone in strictly
condensed H models, i.e. strictly condensed J models in which RN ie
reflexive. Namely, it is possible to prove that a strictly condensed
N frame is an H frame iff R, =HIR'I'1. This is connected with the
fact that in ordinary Kripke models for H, of the form (X,RI.V>, we
mave xf 1A & Vy(xRIH;ly = y ¥A). This also points towards a

erzain connection between intuitionistic negation and the Brouwer-

0

sche modal logic B (based on classical propositional logic), for
which Eripke frames <X’RN> where Ry is reflexive and symmetric are

characteristic,
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Curry’s system E is obtained by extending J with ((A-»B)-»A)= A
(see [3]s Chapter 6). It is easy to conclude that.E is sound and
complete with respect to {condensed, strictly condensed) J frames in
which RI is an equivalence relation, or identity. In general, N mod-
els with RI an equivalence relation, or identity, can serve to study
systems which like E are obtained by extending the negationless frag-
ment of classical propositional logic with some negation axioms. Sim-
ilarly, systems related to Dummett’s intermediate logic LC, which are
obtained by extending the negationless fragment of Heyting’s propo-
sitional logic with (A-»B)V (B-»A) and some negation axioms, could
be studied with N models where RI ie a linear-ordering relation.
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